Методикиcегодня в Базе - 29 креативных методик

Креативная методика: "Прием обращения" все методики

Код для вставки в блог


Код вставки в блог | Результат

Скопируйте готовый код используя комбинацию клавиш Ctrl+C.

Прием обращения
Заглянем краем глаза на творческую кухню гениев, позаимствуем кое-какие рецепты. Бесспорно, каждый гений неповторим, и полностью скопировать его творческий почерк вряд ли возможно. Но нечто общее у гениев все же есть: эвристические приемы — ходы мысли, позволяющие быстро выходить на новые возможности.
Читать полностью

21.02.2013

Автор текста:  Камин Александр

Заглянем краем глаза на творческую кухню гениев, позаимствуем кое-какие рецепты. Бесспорно, каждый гений неповторим, и полностью скопировать его творческий почерк вряд ли возможно. Но нечто общее у гениев все же есть: эвристические приемы — ходы мысли, позволяющие быстро выходить на новые возможности. Об использовании "приема обращения" в физике кратко рассказывает Александр Камин.

Первый такой ход — прием обращения. Допустим, вы столкнулись с загадкой природы: происходит некое непонятное явление, вы хотите его объяснить. И в голову простого смертного, и в голову Мастера приходят вопросы: "почему", "как это происходит", "возможно ли это". Но, в отличие от простого смертного, Мастер вскоре ставит вопрос по-другому: "как сделать, чтобы непонятное явление произошло?". К примеру, Эйнштейн спрашивал себя: "какими способами Природа могла бы добиться, чтобы ЭТО произошло?".

 

Загадочный отскок

Эрнест Резерфорд бомбардировал альфа-частицами золотую фольгу. Стремительные альфа-частицы должны были легко пробивать фольгу, но оказалось, что некоторые отскакивали обратно, "как если бы пуля возвратилась назад к ружью, отскочив от бумажной мишени". Резерфорд задал себе вопрос: как сделать, чтобы заряженная частица отскочила?

Ответ очевиден: она должна столкнуться с массивным одноименным зарядом. Поскольку фольга состоит из атомов, Резерфорд предположил, что атом содержит массивно положительное ядро. Так как атом нейтрален, он должен содержать и отрицательные частицы (электроны).

Возникла очередная задача: электроны притягиваются к ядру и должны бы сразу упасть на него — почему этого не происходит?

Снова заменим вопрос "почему?" вопросом "как сделать, чтобы?..". Как сделать, чтобы электроны не упали на ядро, хотя и притягиваются к нему? Ответ нетрудно увидеть: электроны могут обращаться вокруг ядра, как планеты — вокруг Солнца. Как видите, дважды задав вопрос "как сделать, чтобы?..", удалось выйти на планетарную модель атома.

 

Создайте телескоп

Возможно ли расположить две линзы, чтобы параллельные лучи, пройдя через обе линзы, остались параллельными?

Поставим вопрос по-другому: как сделать, чтобы из линзы II вышли параллельные лучи? Ответ очевиден: лучи должны выходить из ее фокуса F2. Повторим вопрос: как сделать, чтобы лучи выходили из фокуса F2? Ответ снова очевиден: они должны попасть в этот фокус из линзы I. Вы уже догадались, что наш вопрос нужно повторить в третий раз: как сделать, чтобы лучи, пройдя линзу I, собрались в фокусе F2? Фокус F2 должен располагаться в фокусе линзы I, т.е. фокусы двух линз должны совпадать. Это и есть ответ.

 

Спутник — шпион

Можно ли запустить спутник, чтобы он все время находился над одной и той же точкой земной поверхности.

Применим прием обращения: как сделать, чтобы спутник все время находился над одной и той же точкой земной поверхности. Схематический чертёж (вид из точки над Северным полюсом) позволяет легко ответить на этот вопрос: период обращения спутника должен быть равен периоду обращения Земли Tс = Tз После этого задача становится стандартной: радиус орбиты легко находится из II закона Ньютона и закона тяготения того же Ньютона:
Остаются невыясненными важные вопросы:

  1. 1. Наши расчеты верны для экватора. Возможен ли спутник-шпион, наблюдающий за другими точками Земли?
  2. 2. Может ли такое расположение спутника нарушаться? По каким причинам? Устойчиво ли оно?

 

Лилипут сражается с великаном

Можно ли амперметром, рассчитанным на ток i = 0,1 А, измерить ток I = 100 А? Итак, в цепи течет ток I = 100 А, но через амперметр должно пройти не более i = 0,1 А. Возможно ли это?

Применим прием обращения: как сделать, чтобы при большом токе в цепи через амперметр прошел малый ток?

Ответ можно увидеть: отвести "лишний" ток от амперметра. То есть нужно параллельно амперметру подключить сопротивление (шунт), по которому пойдет ток Iш = I — i. Возможно ли это? Опять зададим вопрос, как сделать, чтобы через шунт шел ток Iш = I — i, а через амперметр — ток i? Поскольку Uш = UА, из закона Ома имеем: Видно, что сопротивление шунта должно быть в (I — i)/i раз меньше, чем сопротивление амперметра.

 

Змея, смирно!

Вертикальное положение для змеи смертельно (так написано в старинном учебнике зоологии). Как вы думаете, почему?

Применим прием обращения: Как сделать, чтобы змея погибла? Нужно вывести из строя хотя бы одну из систем организма: опорно-двигательную, нервную или кровеносную.
Какая из этих систем может отказать при изменении положения? Для отказа опорно-двигательной системы (скелета и мышц) змея должна испытать чрезмерную механическую нагрузку (грубо говоря, порваться или сломаться). Нагрузки, которые испытывает змея и ее мышцы в обычной жизни (например, на охоте или во время бегства от врагов) наверняка не меньше силы тяжести змеи. Для примера, оценим ускорение: змея может за время t = 0,1 с достигнуть скорости v = 6 м/с, достаточной для бегства или нападения.

Итак, будем считать, что вы освоили сильный ход мысли — прием обращения.
Он состоит в том, что мы заменяем вопросы " почему?", "возможно ли?..", "как это происходит?" вопросом "как сделать, чтобы?..". Тем самым мы исследовательскую задачу превращаем в изобретательскую.

Уровень сложности методики: 

Этап процесса решения задач: 

Эффективность методики: 1

(Голосов: 2, Рейтинг: 5.00)



Добавить комментарий:

Комментарии: